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Abstract. For a periodic Hamiltonian, periodic dynamical invariants may be used to obtain
non-degenerate cyclic states. This observation is generalized to the degenerate cyclic states, and
the relation between the periodic dynamical invariants and the Floquet decompositions of the
time-evolution operator is elucidated. In particular, a necessary condition for the occurrence
of cyclic non-adiabatic non-Abelian geometrical phase is derived. Degenerate cyclic states are
obtained for a magnetic dipole interacting with a precessing magnetic field.

1. Introduction

Since Berry’s article [1] on adiabatic geometric phase, there have been a growing number of
publications on the subject. The most notable developments have been the characterization
of Berry’s adiabatic phase as the holonomy of a spectral bundle [2], the discovery of the non-
Abelian [3] and classical [4] analogues of Berry’s adiabatic phase, and its generalization
to non-adiabatic cyclic [5] and even non-cyclic evolutions [6]. The main reason for the
enormous excitement generated by Berry’s finding [1] has been the wide range of its
application in different areas of physics [7] and its rich mathematical structure [8].

Indeed, it is quite surprising that geometric phases were not discovered much earlier.
There are a few older papers [9] in the literature where the authors come very close to
discovering the geometric phase. Perhaps one of the most important of these is the classic
1969 paper of Lewis and Riesenfeld [10] on dynamical invariants. The correspondence of
Berry’s phase and Lewis’s phase has been pointed out by Morales [11]. More recently,
Monteolivaet al [12] showed that if a periodic-invariant operatorI (t) with non-degenerate
spectrum was known, then one could obtain all the pure cyclic states as the eigenstates of
I (0) and compute the corresponding geometric phases directly in terms ofI (t). These
authors also pointed out that for a periodic HamiltonianH(t) their method was more
convenient than performing a Floquet decompositionZ(t) eiMt of the time-evolution operator
U(t) and obtaining the pure cyclic states as the eigenstates of the operatorM, as originally
suggested by Moore and Stedman [13, 14] (see also the paper by Furman [15]).

In the present paper, we shall generalize the results of Monteolivaet al [12] to degenerate
cyclic evolutions. This generalization involves the analysis of the relationship between the
periodic dynamical invariantsI (t) and the Floquet operatorsZ(t) andM. In particular, we
obtain a necessary condition for the occurrence of non-adiabatic non-Abelian geometrical
phases factors, and show that a non-degenerate Hamiltonian may support degenerate cyclic
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evolutions. A simple example is provided by the quantum dynamics of a magnetic dipole
interacting with a precessing magnetic field.

The organization of the paper is as follows. In section 2, we recall the basic results of
the Floquet theory for periodic Hamiltonians. In section 3, we discuss the relevance of the
Lewis–Riesenfeld theory of dynamical invariants to the geometric phase. In particular, we
derive the expression for the non-Abelian Lewis phase and demonstrate its coincidence with
the non-adiabatic non-Abelian geometric phase [16]. In section 4, we offer a generalization
of the results of Monteolivaet al [12] to degenerate cyclic evolutions and discuss a
characterization of degenerate cyclic states. In section 5, we apply these results to obtain a
degenerate cyclic state of a magnetic dipole (of spinj = 1) interacting with a precessing
magnetic field. In section 6, we present a summary of our results and conclude the paper
with some final remarks.

In the following we shall set ¯h = 1, represent quantum states with projection operators
and assume that

(i) the HamiltonianH(t) is aT -periodic Hermitian operator with a discrete spectrum, and
(ii) during the evolution of the system there are no level crossings. In particular, the degree

of degeneracy of the eigenvalues of the relevant operators will not depend on time.

2. Floquet theory

A classic result of the Floquet theory [17] is that for a periodic HamiltonianH(t) with
periodT , the time-evolution operatorU(t) can be expressed as

U(t) = Z(t) eiMt (1)

whereZ(t) is a unitaryT -periodic operator, i.e.Z(T ) = Z(0) = 1, andM is a Hermitian
operator. Clearly,U(T ) = eiMT and the cyclic states of the system with periodT are the
eigenstates ofM†.

We shall assume that

(i) M has a discrete spectrum,
(ii) the eigenvaluesµn of M aremn-fold degenerate, and the corresponding eigenvectors
|µn, a〉 with a ∈ {1, 2, . . . , mn} form a complete orthonormal set of basis vectors of the
Hilbert spaceH.

In view of equation (1), if|ψ(t)〉 is the solution of the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (2)

with the initial condition

|ψ(0)〉 = |µn, a〉 (3)

then

|ψ(T )〉 = U(T )|µn, a〉 = eiµnT |µn, a〉. (4)

Therefore the total phase angle associated with the cyclic state vector|µn, a〉 is given by

αn = µnT . (5)

† In some cases, there are special values ofT for which an eigenvector of eiMT is not an eigenvector ofM.
For example letT = 4π andM = J3, whereJ3 is the z-component of the angular momentum operator. Then
eiMT = e4π iJ3 is the identity operator, and any vector|ψ〉 is an eigenvector of eiMT . Taking |ψ〉 to be the sum of
two eigenvector ofJ3, we have an example of a vector which is an eigenvector of eiMT but not an eigenvector of
M. In this paper we shall not consider these special cases.



Non-Abelian geometric phase 9977

This phase angle consists of a dynamical partδn and a geometric partγn (i.e. αn = δn+ γn)
which are expressed in the form [5, 13, 18]

δn = −
∫ T

0
〈ψ(t)|H(t)|ψ(t)〉 dt (6)

γn = i
∫ T

0
〈φ(t)| d

dt
|φ(t)〉 dt (7)

where|φ(t)〉 is a single-valued state vector defining the same pure state as|ψ(t)〉 [5, 19].
A particular choice for|φ(t)〉 is Z(t)|µn, a〉 [13]. Hence,

γn = i
∫ T

0
〈µn, a|Z†(t) d

dt
Z(t)|µn, a〉 dt. (8)

Note that in generalmn > 1, i.e. µn is degenerate. Nevertheless, the associated
eigenvectors|µn, a〉 undergo cyclic evolutions, and the corresponding geometric phase
factors are Abelian.

3. Periodic dynamical invariants and degenerate cyclic evolutions

By definition a dynamical invariantI (t) is a solution of

dI (t)

dt
= i[I (t),H(t)]. (9)

In the following we shall assume that

(i) I (t) is a Hermitian operator with a discrete spectrum,
(ii) the eigenvaluesλn of I (t) are ln-fold degenerate, and the corresponding eigenvectors
|λn, a; t〉 with a ∈ {1, 2, . . . , ln} form a complete orthonormal set of basis vectors of
the Hilbert spaceH.

Note that the eigenvalue equation

I (t)|λn, a; t〉 = λn|λn, a; t〉 (10)

determines the eigenvectors|λn, a; t〉 uniquely up to possibly time-dependent unitary
transformationsu which act on the degeneracy subspace

Hλn(t) := Span{|λn, 1; t〉, |λn, 2; t〉, . . . , |λn, ln; t〉} (11)

associated with the eigenvalueλn. In other words, one may choose another set of complete
orthonormal eigenvectors|λn, a; t〉′ of I (t) which are related to|λn, a; t〉 according to

|λn, b; t〉′ =
ln∑
a=1

|λn, a; t〉uab(t) (12)

whereuab(t) are entries of anln × ln unitary matrixu.
Now following Lewis and Riesenfeld [10], let us differentiate both sides of equation (10),

take the inner product of both sides of the resulting equation with|λm, b; t〉, for somem
andb ∈ {1, . . . , lm}, and use equations (9) and (10) to simplify the result. This leads to

(λn − λm)
[
〈λm, b; t |H |λn, a; t〉 − i〈λm, b; t | d

dt
|λn, a; t〉

]
= iδmnδab

d

dt
λn (13)

whereδ’s are the Kronecker delta functions. Equation (13) implies:

(i) Eigenvaluesλn do not depend on time.
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(ii) Eigenvectors|λn, a; t〉 satisfy

〈λm, b; t |H |λn, a; t〉 − i〈λm, b; t | d

dt
|λn, a; t〉 = 0 for m 6= n. (14)

Clearly if equation (14) is also satisfied form = n, then

〈λm, b; t |
(
H − i

d

dt

)
|λn, a; t〉 = 0 for all m andb (15)

and |λn, a; t〉 is a solution of the Schrödinger equation (2).
A central result of Lewis and Riesenfeld [10] is that although equation (15) may not be

satisfied, there are unitary transformations of the form (12) which map|λn, a; t〉 to a new
set of eigenvectors|λn, a; t〉′ of I (t) which do satisfy equation (15) and provide solutions of
the Schr̈odinger equation. Lewis and Riesenfeld do not, in fact, derive the defining equation
for the matrixu. They suffice to say that this matrix may be diagonalized and obtain the
equation satisfied by its eigenvalues, the Lewis phases.

In order to obtain the appropriate unitary transformationu for a given eigenvalueλn,
we demand that equation (15) be fulfilled for the primed eigenvectors. Settingm = n, using
equations (12) and (14), and simplifying the resulting expression, we obtain

i
d

dt
u(t) = 1(t) u(t) (16)

where1(t) is an ln × ln matrix with entries

1ab(t) := Eab(t)−Aab(t) (17)

Eab(t) := 〈λn, a; t |H |λn, b; t〉 (18)

Aab(t) := i〈λn, a; t | d

dt
|λn, b; t〉. (19)

Since equation (16) has the form of a matrix Schrödinger equation, its solution can be
written implicitly as

u(t) = T e−i
∫ t

0 1(t
′) dt ′u(0) = T ei

∫ t
0 [−E(t ′)+A(t ′)] dt ′u(0) (20)

where T is the time-ordering operator. If the matricesE(t) = (Eab) and A = (Aab)
commute, then equation (20) can be expressed as

u(t) = T e−i
∫ t

0 E(t ′) dt ′T ei
∫ t

0 A(t ′) dt ′u(0). (21)

Next consider the spectral resolution ofI (t), namely

I (t) =
∑
n

λn 3n(t) (22)

where

3n(t) :=
ln∑
a=1

|λn, a; t〉〈λn, a; t | =
ln∑
a=1

|λn, a; t〉′〈λn, a; t |′ (23)

is the degenerate eigenprojector (state) associated with the eigenvalueλn or alternatively
the degeneracy subspaceHλn(t). Now, if I (t) is a periodic dynamical invariant with period
T , i.e. I (T ) = I (0), then the degenerate eigenprojectors3n(t) will also be periodic, i.e.
3n(T ) = 3n(0). In other words,3n(0) undergodegenerate cyclic evolutions.

Let us choose a set of instantaneous eigenvectors|λn, a; t〉 of I (t). Then |λn, a; t〉 are
single-valued and periodic,|λn, a; T 〉 = |λn, a; 0〉. Now consider the evolution of a frame

9(0) = {|ψ1(0)〉, . . . , |ψln(0)〉} (24)
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of Hλn(0). We can choose the initial condition in such a way that|ψa(0)〉 = |λn, a; 0〉 =
|λn, a; 0〉′. Then the vectors constituting the frame evolve according to|ψa(t)〉 = |λn, a; t〉′.
After a complete cycle, therefore, one obtains a new frame9(T ) of the degeneracy subspace
Hλn(T ) = Hλn(0) which is related to9(0) by the unitary transformation (20), withu(0) = 1,
or alternatively by (21) if the matricesE(t) andA(t) commute. Fort = T , the second
time-ordered exponential in (21) is precisely the non-adiabatic non-Abelian geometric phase
factor of Anandan [16].

Note that under the single-valued unitary (gauge) transformations of the basis vectors
|λn, a;R(t)〉, the non-Abelian geometric phase factor (20) transforms covariantly—not
invariantly. This means that the physically observable quantities depend only on its
invariants, namely, its eigenvalues. As discussed in [16], one can in general find an
eigenbasis{λn, a;R(t)〉} in which the total non-Abelian phase factor (20) is diagonal. In
this basis, the invariant diagonal elements which are of physical importance can be written
as the product of a dynamical part and a geometrical part.

4. Periodic invariants and Floquet decompositions

As discussed in the preceding section, given a dynamical invariantI (t) one can obtain
solutions of the corresponding Schrödinger equation as eigenvectors ofI (t), provided that
one performs the necessary unitary transformations. The converse of this procedure is also
valid. In order to see this, letC := {|ψn(0)〉} be a complete set of state vectors,cn ∈ R,
and |ψn(t)〉 := U(t)|ψn(0)〉 be the solutions of the Schrödinger equation (2) corresponding
to the initial conditions|ψn(t = 0)〉 = |ψn(0)〉. Then

I (t) :=
∑
n

cn|ψn(t)〉〈ψn(t)| = U(t)
[∑

n

cn|ψn(0)〉〈ψn(0)|
]
U †(t) = U(t) I (0) U †(t) (25)

is a dynamical invariant†. In fact, every dynamical invariantI (t) can be viewed as
associated with a complete setC of initial state vectors, and expressed as

I (t) = U(t) I (0) U †(t). (26)

For a periodic dynamical invariantI (t) with periodT , one has

I (0) = I (T ) = U(T ) I (0) U †(T ) = eiMT I (0) e−iMT . (27)

For a generic value ofT , this implies‡
[I (0),M] = 0. (28)

In particular,M andI (0) have simultaneous eigenvectors, and

I (t) = Z(t) I (0) Z†(t). (29)

Now let us recall that the eigenprojectors3n(0) of I (0) represent the degenerate cyclic
states. If3n(0) happens to also be an eigenprojector ofM, then the corresponding total
phase factor is Abelian. Therefore, a necessary condition for the occurrence of a non-
Abelian geometric phase is the existence of aT -periodic dynamical invariantI (t) such that
I (0) has a degenerate eigenprojector which is not an eigenprojector of the Floquet operator
M, i.e. I (0) andM have different degeneracy structures.

This observation suggests a way of obtaining degenerate cyclic states even for systems
whose Hamiltonian and (or) evolution operator are non-degenerate.

† Note that the numberscn are not generally distinct.
‡ There are special situations where

[
eiMT , I (0)

] = 0 will not imply [M, I (0)] = 0. See the footnote after
equation (1) for an example. The results presented below can also be obtained using equation (27) directly.
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5. Application to the spin system

Perhaps the best-known example of a model which leads to Abelian geometric phases is
a magnetic dipole (a spin) interacting with a changing classical magnetic field [1, 18–20].
The Hamiltonian is given by

H(t) = b ER(t) · EJ (30)

whereb is (proportional to) the Larmor frequency,ER(t) ∈ R3 describes the magnetic field
vector and EJ is the angular momentum of the dipole. ForER(t) 6= 0, the eigenvalues of
H(t) are all non-degenerate and given byb| ER|k wherek is a half-integer. If the dipole has
total angular momentumj , thenk ∈ {−j,−j + 1, . . . , j}.

In the following we shall restrict ourselves to the simplest possible dipole system which
would allow for a degenerate cyclic evolution. Clearly, this is thej = 1 case, where
the Hilbert space is three dimensional. The general problem of non-Abelian adiabatic
geometrical phase for systems with a three-dimensional Hilbert space is discussed in [21].
Here we are interested in the non-adiabatic non-Abelian phases.

In view of the results of the Floquet theory, let us consider an evolution operator of the
form (1) with

Z(t) = ei�tJ1 M = ωJ3 (31)

where� := 2π/T andω is an arbitrary positive real constant. This corresponds to the
T -periodic Hamiltonian,

H = − [�J1+ ω sin(�t)J2+ ω cos(�t)J3] (32)

of a magnetic dipole interacting with a precessing magnetic field.
Clearly the pure cyclic states are eigenstates ofM = ωJ3. Since j = 1, J3 has

three non-degenerate eigenvalues, namely−1, 0 and 1. We shall denote the corresponding
eigenvectors by|−〉, |0〉 and |+〉, respectively. Therefore, we can write

M = ω(|+〉〈+| − |−〉〈−|). (33)

Now consider an invariantI (t) of the formZ(t) I (0) Z†(t) with

I (0) = λ1(|+〉〈+| + |0〉〈0|)+ λ2|−〉〈−| λ1, λ2 ∈ R− {0}. (34)

Obviously I (0) commutes withM and I (t) is T -periodic. Moreover,31(0) := |+〉〈+| +
|0〉〈0| is a degenerate eigenprojector which undergoes a cyclic evolution.

If we choose9(0) = {|+〉, |0〉} as the initial frame for the cyclic evolution the unitary
operation relating9(0) to 9(T ) will be diagonal and the total phase factor will still be
Abelian. However, if we choose an arbitrary initial frame,

9(0) = {|ψ1(0)〉, ψ2(0)〉} |ψ1(0)〉 := ξ |+〉 + ζ |0〉 |ψ2(0)〉 := ζ ∗|+〉 − ξ ∗|0〉 (35)

with ξ, ζ ∈ C and |ξ |2 + |ζ |2 = 1, then we obtain a non-diagonal unitary operator and
a non-Abelian phase. Using the basic properties of the angular momentum operators and
the relation|λ1, a; t〉 = Z(t)|λ1, a; 0〉, which follows fromI (t) = Z(t) I (0) Z†(t), we can
easily obtain

E = −ω
( |ξ |2 ξ ∗ζ ∗

ξζ |ζ |2
)
− �√

2

(
ξ ∗ζ + ζ ∗ξ −ξ ∗2+ ζ ∗2
−ξ2+ ζ 2 −(ξ ∗ζ + ζ ∗ξ)

)
(36)

A = − �√
2

(
ξ ∗ζ + ζ ∗ξ −ξ ∗2+ ζ ∗2
−ξ2+ ζ 2 −(ξ ∗ζ + ζ ∗ξ)

)
(37)

1 = −ω
( |ξ |2 ξ ∗ζ ∗

ξζ |ζ |2
)
. (38)
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SinceE,A and1 do not depend on time, we have

9(T ) = e−iT19(0). (39)

Note thatE andA do not generally commute and equation (21) does not hold.

6. Conclusion

In this paper, we have explored the relationship between the Floquet decomposition of
the evolution operator for a periodic Hamiltonian and the periodic dynamical invariants
of Lewis and Riesenfeld. We showed that the degenerate cyclic states may be viewed as
the eigenstates of a Hermitian operatorI (0) which serves as the initial value of a periodic
dynamical invariantI (t). We derived the expression for the corresponding non-Abelian
non-adiabatic geometrical phase in terms of the eigenvectors ofI (t); thus generalizing the
results of Monteolivaet al [12] to degenerate cyclic evolutions.

We used our results to show that the simple quantum system describing the dynamics
of a magnetic dipole in a precessing magnetic field, which since Berry’s paper [1] has
served as the main example involving a non-trivial Abelian geometrical phase, also leads
to degenerate cyclic evolutions.

We wish to conclude this paper with the following remarks:

(i) The Moore–Stedman [13] method of generating the pure cyclic states as eigenstates of
the Floquet operatorM may be viewed as a special case of the method of invariants.
This can be easily seen, by associating aT -periodic dynamical invariant, namely
I (t) := Z(t)M Z†(t), to a given Floquet decompositionZ(t) eiMt of the evolution
operator.

(ii) The method of invariants is superior to the method of Moore and Stedman [13], as it
can also be used to generate degenerate cyclic states.

(iii) For a general quantum system with a three-dimensional Hilbert space, one can easily
apply the method developed in [21] to obtain the general form of a Hermitian invariant
which leads to a degenerate cyclic evolution. In particular, one can show that the
parameter space of such invariants has the manifold structure ofCP 2.
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