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Abstract. For a periodic Hamiltonian, periodic dynamical invariants may be used to obtain
non-degenerate cyclic states. This observation is generalized to the degenerate cyclic states, and
the relation between the periodic dynamical invariants and the Floquet decompositions of the
time-evolution operator is elucidated. In particular, a necessary condition for the occurrence
of cyclic non-adiabatic non-Abelian geometrical phase is derived. Degenerate cyclic states are
obtained for a magnetic dipole interacting with a precessing magnetic field.

1. Introduction

Since Berry's article [1] on adiabatic geometric phase, there have been a growing number of
publications on the subject. The most notable developments have been the characterization
of Berry’s adiabatic phase as the holonomy of a spectral bundle [2], the discovery of the non-
Abelian [3] and classical [4] analogues of Berry’s adiabatic phase, and its generalization
to non-adiabatic cyclic [5] and even non-cyclic evolutions [6]. The main reason for the
enormous excitement generated by Berry’'s finding [1] has been the wide range of its
application in different areas of physics [7] and its rich mathematical structure [8].

Indeed, it is quite surprising that geometric phases were not discovered much earlier.
There are a few older papers [9] in the literature where the authors come very close to
discovering the geometric phase. Perhaps one of the most important of these is the classic
1969 paper of Lewis and Riesenfeld [10] on dynamical invariants. The correspondence of
Berry’s phase and Lewis’s phase has been pointed out by Morales [11]. More recently,
Monteolivaet al [12] showed that if a periodic-invariant operatoir) with non-degenerate
spectrum was known, then one could obtain all the pure cyclic states as the eigenstates of
I1(0) and compute the corresponding geometric phases directly in ternigsof These
authors also pointed out that for a periodic Hamiltonidrz) their method was more
convenient than performing a Floquet decomposifi@n) €’ of the time-evolution operator
U (t) and obtaining the pure cyclic states as the eigenstates of the op&fass originally
suggested by Moore and Stedman [13, 14] (see also the paper by Furman [15]).

In the present paper, we shall generalize the results of Montestl®id12] to degenerate
cyclic evolutions. This generalization involves the analysis of the relationship between the
periodic dynamical invariants(¢) and the Floquet operato#(¢) and M. In particular, we
obtain a necessary condition for the occurrence of non-adiabatic non-Abelian geometrical
phases factors, and show that a non-degenerate Hamiltonian may support degenerate cyclic
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evolutions. A simple example is provided by the quantum dynamics of a magnetic dipole
interacting with a precessing magnetic field.

The organization of the paper is as follows. In section 2, we recall the basic results of
the Floquet theory for periodic Hamiltonians. In section 3, we discuss the relevance of the
Lewis—Riesenfeld theory of dynamical invariants to the geometric phase. In particular, we
derive the expression for the non-Abelian Lewis phase and demonstrate its coincidence with
the non-adiabatic non-Abelian geometric phase [16]. In section 4, we offer a generalization
of the results of Monteolivaet al [12] to degenerate cyclic evolutions and discuss a
characterization of degenerate cyclic states. In section 5, we apply these results to obtain a
degenerate cyclic state of a magnetic dipole (of spia 1) interacting with a precessing
magnetic field. In section 6, we present a summary of our results and conclude the paper
with some final remarks.

In the following we shall sek = 1, represent quantum states with projection operators
and assume that

(i) the HamiltonianH (¢) is a T-periodic Hermitian operator with a discrete spectrum, and
(i) during the evolution of the system there are no level crossings. In particular, the degree
of degeneracy of the eigenvalues of the relevant operators will not depend on time.

2. Floquet theory

A classic result of the Floquet theory [17] is that for a periodic Hamiltonta@r) with
period T, the time-evolution operatdy (r) can be expressed as

Ut) = Z(t) eM (1)

whereZ(¢) is a unitaryT-periodic operator, i.eZ(T) = Z(0) = 1, andM is a Hermitian
operator. Clearlyl/(T) = é€M” and the cyclic states of the system with peribdare the
eigenstates oM.

We shall assume that

(i) M has a discrete spectrum,

(ii) the eigenvaluest, of M arem,-fold degenerate, and the corresponding eigenvectors
|, a) witha € {1, 2, ..., m,} form a complete orthonormal set of basis vectors of the
Hilbert spaceH.

In view of equation (1), ifi¥ (¢)) is the solution of the Scbdinger equation

i%h//(t)) =H@) [y () (2)
with the initial condition

¥ (0) = |un, a) 3)
then

W (1) = UMD, @) = €7 |y, a). @
Therefore the total phase angle associated with the cyclic state vagtar) is given by

oy =, T. )

1 In some cases, there are special valued dbr which an eigenvector of 87 is not an eigenvector oM.

For example lel’ = 4= and M = J3, where J3 is the z-component of the angular momentum operator. Then
éMT — giss is the identity operator, and any vectgr) is an eigenvector of 7. Taking|v) to be the sum of
two eigenvector offs, we have an example of a vector which is an eigenvectot6f éut not an eigenvector of
M. In this paper we shall not consider these special cases.
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This phase angle consists of a dynamical pamnd a geometric past, (i.e. o, = 8, + y)
which are expressed in the form [5, 13, 18]

T
& = —/O (Y OIH @Oy (1)) dt (6)
dr

where|¢(¢)) is a single-valued state vector defining the same pure statg@p [5, 19].
A particular choice foll¢(¢)) is Z(t)|u,, a) [13]. Hence,

(T d
v =i fo G156 di @

T
. d
Vo = ./ wn,a|ZT<z>—d Z(t)| i, a) dr. (8)
0 t

Note that in generaln, > 1, i.e. u, is degenerate. Nevertheless, the associated
eigenvectors|u,, a) undergo cyclic evolutions, and the corresponding geometric phase
factors are Abelian.

3. Periodic dynamical invariants and degenerate cyclic evolutions

By definition a dynamical invariank(z) is a solution of
dar@ .
d—=|[1(l),H(l)]~ 9)
1
In the following we shall assume that
(i) 1(r) is a Hermitian operator with a discrete spectrum,
(i) the eigenvalues., of 1(¢) arel,-fold degenerate, and the corresponding eigenvectors
[An,a;t) with a € {1,2,...,1,} form a complete orthonormal set of basis vectors of
the Hilbert spacéH.

Note that the eigenvalue equation
L) A, a; t) = Aylhn, a; 1) (10)

determines the eigenvectots,, a; r) uniquely up to possibly time-dependent unitary
transformations: which act on the degeneracy subspace

H,, (1) :=Span{|i,, 1; 1), [An, 25 1), ..., [An, Lys 1)} (11)

associated with the eigenvalag. In other words, one may choose another set of complete
orthonormal eigenvectois.,, a; t)’ of I(¢+) which are related ton,, a; t) according to

In
s 51) =Y hns @5 1)t (1) (12)
a=1

whereu,,(t) are entries of am, x [, unitary matrixu.

Now following Lewis and Riesenfeld [10], let us differentiate both sides of equation (10),
take the inner product of both sides of the resulting equation \&jth b; ¢), for somem
andb € {1, ...,1,}, and use equations (9) and (10) to simplify the result. This leads to

dr
whered’s are the Kronecker delta functions. Equation (13) implies:

. d . d
O‘n - )Lm) |:<)‘ma b; t|H|)‘nv a; t) - |<)‘m’ b; t|a|)‘-na a; t>:| = I(Smngab_)\n (13)

(i) Eigenvalues\, do not depend on time.



9978 A Mostafazadeh
(i) Eigenvectors|a,, a; t) satisfy
d
(k,,,,b;t|H|kn,a;t)—i()»m,b;t|a|)un,a; t)=0 for m #n. (14)

Clearly if equation (14) is also satisfied far = n, then

d
{Am, b; t|<H — i—)Mn, a;t)=0 for all m andb (15)

dt
and|A,, a; t) is a solution of the Sckidinger equation (2).

A central result of Lewis and Riesenfeld [10] is that although equation (15) may not be
satisfied, there are unitary transformations of the form (12) which map; ¢) to a new
set of eigenvectorp.,, a; t)’ of 1(¢) which do satisfy equation (15) and provide solutions of
the Schoédinger equation. Lewis and Riesenfeld do not, in fact, derive the defining equation
for the matrixu. They suffice to say that this matrix may be diagonalized and obtain the
equation satisfied by its eigenvalues, the Lewis phases.

In order to obtain the appropriate unitary transformatiofor a given eigenvalue.,,
we demand that equation (15) be fulfilled for the primed eigenvectors. Settiag:, using
equations (12) and (14), and simplifying the resulting expression, we obtain

.d

Iau(t) = A() u(r) (16)
whereA(r) is anl, x [, matrix with entries

Aup(t) = Eap(t) — Aup(2) (7)

Eap(t) = (A, as t|H|A,, b 1) (18)

Aawp(t) = 1(Ay, a; tl%lkn, b;t). (19)

Since equation (16) has the form of a matrix Sxdinger equation, its solution can be
written implicitly as

u(t) = Te o 214y Q) = T =€ +AA, ) (20)

where 7 is the time-ordering operator. If the matric€st) = (£,) and A = (Ay)
commute, then equation (20) can be expressed as

u(t) = Te hEOd T o A’ ) (21)
Next consider the spectral resolution bf), namely
I(t) ="M Au(®) (22)
where
A A
An(®) =Y @i Yo art] = |h.ast) (. ast] (23)
a=1 a=1

is the degenerate eigenprojector (state) associated with the eigenyabrealternatively
the degeneracy subspakg, (r). Now, if /() is a periodic dynamical invariant with period
T, i.e. I(T) = 1(0), then the degenerate eigenprojectarst) will also be periodic, i.e.
A, (T) = A,(0). In other words,A, (0) undergodegenerate cyclic evolutions.

Let us choose a set of instantaneous eigenve¢igrs:; ) of 1(z). Then|x,, a; t) are
single-valued and periodi¢.,, a; T) = |A,, a; 0). Now consider the evolution of a frame

V(0 = {[¥1(0). ..., ¥, 0)} (24)
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of H,,(0). We can choose the initial condition in such a way that(0)) = [A,,a; 0) =

|A., a; 0)'. Then the vectors constituting the frame evolve according o)) = |A,, a; t)’.

After a complete cycle, therefore, one obtains a new franig) of the degeneracy subspace
H,,(T) = H,,(0) which is related tol (0) by the unitary transformation (20), with0) = 1,

or alternatively by (21) if the matrice§(¢) and .A(r) commute. Forr = T, the second
time-ordered exponential in (21) is precisely the non-adiabatic hon-Abelian geometric phase
factor of Anandan [16].

Note that under the single-valued unitary (gauge) transformations of the basis vectors
|Ans @; R(2)), the non-Abelian geometric phase factor (20) transforms covariantly—not
invariantly. This means that the physically observable quantities depend only on its
invariants, namely, its eigenvalues. As discussed in [16], one can in general find an
eigenbasiq,, a; R(t))} in which the total non-Abelian phase factor (20) is diagonal. In
this basis, the invariant diagonal elements which are of physical importance can be written
as the product of a dynamical part and a geometrical part.

4. Periodic invariants and Floquet decompositions

As discussed in the preceding section, given a dynamical invafi@itone can obtain
solutions of the corresponding Sékiinger equation as eigenvectorsidf), provided that

one performs the necessary unitary transformations. The converse of this procedure is also
valid. In order to see this, laf := {|v,,(0))} be a complete set of state vectors, < R,

and |, (1)) := U@®)|¥,(0)) be the solutions of the Sdbdinger equation (2) corresponding

to the initial conditiongy,,(t = 0)) = |¥,(0)). Then

1@) =) calu @) (W (0)] = U(r)[chwn(onwn(on]m O =UmnI10U @) (25)

n n

is a dynamical invariant In fact, every dynamical invariant(z) can be viewed as
associated with a complete g2bf initial state vectors, and expressed as

I&)=U@) 1)U (). (26)
For a periodic dynamical invariart(+) with period T, one has
100)=I(T)=UM) 10 UN(T)="T1(0)eMT. (27)
For a generic value df, this implieg
[1(0), M] =0. (28)
In particular,M and(0) have simultaneous eigenvectors, and
I(t) = Z@) 1(0) Z' (). (29)

Now let us recall that the eigenprojectoks (0) of 1(0) represent the degenerate cyclic
states. IfA,(0) happens to also be an eigenprojectorMf then the corresponding total
phase factor is Abelian. Therefore, a necessary condition for the occurrence of a non-
Abelian geometric phase is the existence @f-geriodic dynamical invariank(z) such that
1(0) has a degenerate eigenprojector which is not an eigenprojector of the Floquet operator
M, i.e. 1(0) and M have different degeneracy structures.

This observation suggests a way of obtaining degenerate cyclic states even for systems
whose Hamiltonian and (or) evolution operator are non-degenerate.

T Note that the numbers, are not generally distinct.
i There are special situations whef@¥”, 1(0)] = 0 will not imply [M, I(0)] = 0. See the footnote after
equation (1) for an example. The results presented below can also be obtained using equation (27) directly.
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5. Application to the spin system

Perhaps the best-known example of a model which leads to Abelian geometric phases is
a magnetic dipole (a spin) interacting with a changing classical magnetic figl@{20].
The Hamiltonian is given by

H(t) = bR(t) - J (30)

whereb is (proportional to) the Larmor frequencﬁ(t) € R3 describes the magnetic field
vector andJ is the angular momentum of the dipole. FB(:) # 0, the eigenvalues of
H (t) are all non-degenerate and glvenﬂqy€|k wherek is a half-integer. If the dipole has
total angular momentunj, thenk € {—j, —j +1,..., j}.

In the following we shall restrict ourselves to the simplest possible dipole system which
would allow for a degenerate cyclic evolution. Clearly, this is the= 1 case, where
the Hilbert space is three dimensional. The general problem of non-Abelian adiabatic
geometrical phase for systems with a three-dimensional Hilbert space is discussed in [21].
Here we are interested in the non-adiabatic non-Abelian phases.

In view of the results of the Floquet theory, let us consider an evolution operator of the
form (1) with

Z(1) = M=wl; (31)

whereQ := 27/T and w is an arbitrary positive real constant. This corresponds to the
T-periodic Hamiltonian,

H = —[QJ1 4+ wsin(Qt)J, + w cog Q) J3) (32)

of a magnetic dipole interacting with a precessing magnetic field.

Clearly the pure cyclic states are eigenstatesMof= wJ3. Since j = 1, J3 has
three non-degenerate eigenvalues, namely0 and 1. We shall denote the corresponding
eigenvectors by—), |0) and|+), respectively. Therefore, we can write

M = o(|+)(+] = [=){=D. (33)
Now consider an invariank(z) of the form Z(r) I(0) Zt(¢) with
1(0) = A1(J+){(+] + 10){0]) + A2|—){—| A1, 22 € R — {0} (34)

Obviously I (0) commutes withM and I (¢) is T-periodic. MoreoverA1(0) := |+)(+] +
|0)(0] is a degenerate eigenprojector which undergoes a cyclic evolution.

If we chooseWw (0) = {|+), |0)} as the initial frame for the cyclic evolution the unitary
operation relating?(0) to W(T) will be diagonal and the total phase factor will still be
Abelian. However, if we choose an arbitrary initial frame,

V(O = {Iy1(0), ¥2(0)}  [¥1(0) == &[+) +¢10)  [¥2(0)) == [+) — £7(0)  (35)

with £,¢ € C and |£]?> + |¢]?> = 1, then we obtain a non-diagonal unitary operator and

a non-Abelian phase. Using the basic properties of the angular momentum operators and
the relation|i1, a; t) = Z(t)|11, a; 0), which follows from () = Z(t) 1(0) Z(¢), we can

easily obtain

_ o EF g Q@ [(Er+rE g4 )

€= “’( & IeP ) f( I ) (36)
E e 82 )

f( B (37)

A:_w<|i"|2 £rer ) (38)

A=—

Er ¢l
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Since&, A and A do not depend on time, we have
W(T) =e ' T2y(0). (39)

Note that€ and.A do not generally commute and equation (21) does not hold.

6. Conclusion

In this paper, we have explored the relationship between the Floquet decomposition of
the evolution operator for a periodic Hamiltonian and the periodic dynamical invariants
of Lewis and Riesenfeld. We showed that the degenerate cyclic states may be viewed as
the eigenstates of a Hermitian operaf@®) which serves as the initial value of a periodic
dynamical invariant/ (r). We derived the expression for the corresponding non-Abelian
non-adiabatic geometrical phase in terms of the eigenvectofs:gfthus generalizing the
results of Monteoliveet al [12] to degenerate cyclic evolutions.

We used our results to show that the simple quantum system describing the dynamics
of a magnetic dipole in a precessing magnetic field, which since Berry’s paper [1] has
served as the main example involving a non-trivial Abelian geometrical phase, also leads
to degenerate cyclic evolutions.

We wish to conclude this paper with the following remarks:

() The Moore-Stedman [13] method of generating the pure cyclic states as eigenstates of
the Floquet operatoM may be viewed as a special case of the method of invariants.
This can be easily seen, by associatingl @eriodic dynamical invariant, namely
I(t) := Z(t)M Z'(r), to a given Floquet decompositioi(r) €™’ of the evolution
operator.

(i) The method of invariants is superior to the method of Moore and Stedman [13], as it
can also be used to generate degenerate cyclic states.

(iii) For a general quantum system with a three-dimensional Hilbert space, one can easily
apply the method developed in [21] to obtain the general form of a Hermitian invariant
which leads to a degenerate cyclic evolution. In particular, one can show that the
parameter space of such invariants has the manifold structufe?éf
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